1.

Find the area and perimeter of a rhombus whose diagonals are 24 cm and 32 cm long.1. 768 cm2 and 160 cm2. 384 cm2 and 80 cm3. 364 cm2 and 20 cm4. 568 cm2 and 80 cm

Answer» Correct Answer - Option 2 : 384 cm2 and 80 cm

Given:

Diagonals of a rhombus are 24 cm and 32 cm respectively

Formula used:

Perimeter of Rhombus = 4 × side

Area of Rhombus = (d1 × d2)/2

Area of Rhombus = Side × Altitude

d12 + d22 = 4 × s2

Here, d1, d2, and s are diagonals and side of rhombus respectively.

Concept used:

All sides of a rhombus are equal and diagonals bisect each other at a right angle.

Calculation:

Area of Rhombus = (d1 × d2)/2

⇒ Area of Rhombus = (24 × 32)/2

⇒ Area of Rhombus = 384

Now, d12 + d22 = 4 × s2

⇒ 242 + 322 = 4 × s2

⇒ s2 = 400

⇒ s = 20

Perimeter = 4 × side = 4 × 20 = 80

∴ The perimeter and area of the Rhombus are 80 cm and 384 cm2



Discussion

No Comment Found

Related InterviewSolutions