1.

Find the area of the parallelogram whose diagonals are represented by the vectors `vec(d)_(1)=(2 hat(i) - hat(j)+ hat(k)) and vec(d)_(2) = (3 hat(i) + 4 hat(j) - hat(k)).`

Answer» Given that `vec(d)_(1)=(2hat(i) - hat(j) + hat(k)) and vec(d)_(2) =(3 hat(i) + 4 hat(j) - hat(k)).`
`" Vector area of the || gm is "1/2(vec(d)_(1) xxvec(d)_(2)).`
Now,`(vec(d)_(1) xx vec(d)_(2)) = |(hat(i), hat(j), hat(k)),(2,-1,1),(3,4,-1)|`
`=(1-4)hat(i) - (-2-3) hat(j) + (8+3) hat(k)`
`= (-3hat(i) + 5 hat(j)+ 11 hat(k)).`
Required area `=1/2|vec(d) xx vec(d)_(2)|`
`= 1/2 sqrt((-3)^(2)+ 5^(2)+ (11)^(2)) "sq units "`.
`= 1/2 sqrt(155) " sq units ".`


Discussion

No Comment Found

Related InterviewSolutions