 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Find the area of the smaller part of the circle `x^2+y^2=a^2`cut off by the line `x=a/(sqrt(2))` | 
| Answer» require Area= `int ydx` `= int_(a/sqrt2)^a 2 sqrt(a^2 - x^2) dx` `=> x = aSin theta` `dx= a cos theta d theta` when `x=a/sqrt2, sin theta= 1/sqrt2` `theta= pi/4` when `x=a, sin theta = 1` `theta= pi/2` `= 2 int _(pi/4)^ (pi/2) (a cos theta)(a cos theta) d theta` `= 2a^2 int_ (pi/4)^(pi/2) (cos 2 theta +1)d theta` `= a^2[ int_(pi/2)^(pi/4)Cos 2 theta d theta + int 1 d theta]` `= a^2[[sin 2 theta/2] + [ theta]]` `= a^2[[-1/2] +[pi/4]]` `= a^2[pi/4 - 1/2]` answer | |