InterviewSolution
Saved Bookmarks
| 1. |
Find the circum-centre and the circum-radius of a triangle ABC formed by the vertices A(2,-2) , B (-1,1) and C(3,1). |
|
Answer» Let S(x,y) be the circum-centre of `Delta`ABC . `therefore SA^(2) = SB^(2) = SC^(2)` Consider `SA^(2) = SB^(2)` `implies (x-2)^(2) + (y+2)^(2) = (x +1)^(2) + (y-1)^(2)` `x^(2) - 4x + 4 + y^(2) + 4y + 4 = x^(2) + 2x + 1 + y -2y + 1` `-4x + 4y + 8 = 2x -2y + 2` `6x - 6y - 6 = 0` `x - y - 1= 0" " (1)` `SB^(2) = SC^(2) ` `implies (x+1)^(2) + (y-1)^(2) = (x-3)^(2) + (y-1)^(2)` `x^(2) + 2x + 1 + y^(2) - 2y + 1 = x^(2) - 6x + 9 + y - 2y +1` `2x - 2y + 2 = -6x - 2y + 10` `8x - 8 = 0` `implies x -1`. Substituting x = 1 in Eq. (1) , we get y = 0 . `therefore` The required circum-centre of `DeltaABC` is (1,0). Circum-radius , SA = `sqrt((2-1)^(2) + (-2-0)^(2)) = sqrt5` units. |
|