InterviewSolution
Saved Bookmarks
| 1. |
Find the common difference of an AP, whose first term is 100 and the sum of whose first six terms is five times the sum of the next six terms. |
|
Answer» Here `a=100`. Let the common diference be `d`. The sum of the first six terms `t_(1)+t_(2)+…………+t_(6)` `=a+(a+d)+...+(a+5d)`. The sum of the six terms `=t_(7)+t_(8)+….+t_(12)` `=(a+6d)+(a+8d)+….+(a+11d)` From the given condition, `(t_(1)+t_(2)+t_(3)+.........+t_(6))=5(t_(7)+t_(8)+.....+t_(12))` `[(a+(a+d)+.............+a+5d)]=5[(a+6d)+(a+7d)+...........+(a+11d)]` `:.[6a+(1+2+....+5)d]=[(6a+6+7+.............+11)d]`.............1 Now `1+2+.......+5=n/2(t_(1)+t_(n))=5/2(1+5)=5/2(1+5)=5/2xx6=15`.........2 and `6+7+............+11=n/2(t_(1)+t_(n))=6/2(6+11)=3xx17=51`.............3 From 1, 2 and 3 `6a+15d=(6a+51d)` `:.6a+15d=30a+255d` `:.30a-6a=-255d+15d` `:.24a=-240d` `:.a=-10d`........(Dividing both the sides by 24) `:.100=-10d` ........(Substituting `a=100`) .........(Given) `:.d=-10` Now `a=-t_(1)=100,d=-10` `:.t_(2)+t_(1)+d=100-10=90,t_(3)=t_(2)+d=90-10=80` Ans. The required A.P. is 100, 90, 70............ |
|