InterviewSolution
Saved Bookmarks
| 1. |
In ` Delta ABC, angle ACB = 90^(@) ," seg "CD bot ` side AB and seg CE is angle bisector of `angle ACB` Prove : ` (AD)/(BD) = (AE^(2))/(BE^(2))` |
|
Answer» In ` Delta ACB`, ray CE bisects ` angle ACB` ` :. ` by theorem of angle bisector of a Delta ` (AC)/(CB)= (AE)/(EB)` Squaring both the sides , we get , `(AC^(2))/(CB^(2)) = (AE^(2))/(EB^(2))` In ` Delta ACB, angle ACB = 90^(@)` seg CD `bot` hypotenuse AB ` Delta ACB ~ Delta ADC ~ Delta CDB` ... (Similarity of right angled Delta ) ... (2) ` Delta ACB ~ Delta ADC " " ` ... [ From (2)] ` (AC)/(AD) = (AB)/(AC) " "` (Corresponding sides of similar triangfle ) ` :. AC^(2) = AB xx AD " "` ...(3) also, ` Delta ACB ~ Delta CDB " "` ... [ From (2)] ` :. (AB)/(BC) = (BC)/(BD)" "` ( Correesponding sides of similar Delta ) ` :. BC^(2) = AB xx BD " "` ... (4) Substituting the values of (3) and (4) in (1) , we get ` (ABxx AD)/(ABxxBD) = (AE^(2))/(EB^(2))` ` :. (AD)/(BD) = (AE^(2))/(EB^(2))` |
|