InterviewSolution
Saved Bookmarks
| 1. |
Find the component of a vector ` vec A = 3 hat I + 4 hat j` along the direction of ` 2hat I -3 hat j`. |
|
Answer» Here, `vec A =(3 hat I + 4 hat j ), vec B =( 2hat I - 3 hat j)` Unit vector ob ` vec B` , ` hat B (vec B) /B = (2 hai -3 hat j)/( sqrt( (2)^(2) + (-3)^(2)) =(2 hat - 3 hat j)/(sqrt 13)` Let `theta` be the anle between ` vec A and vec B`. The componet of `vec A` along the direction of ` vec B` is `=(A cos rhea ) hat B = (vec A . hat B) hat B` `=[(3 hat i + 4 hat j). ((2 hati -3 hat j)/(sqrt 13))] ((2 hat i -3 hatj )/(sqrt 13 ))` `((6 -12))/(13) (2 hat i -3 hat j) =- 6/(13) (2 hat i -3 hat j)`. |
|