InterviewSolution
Saved Bookmarks
| 1. |
Find the continuous function `f`where `(x^4-4x^2)lt=f(x)lt=(2x^2-x^3)`such that the area bounded by `y=f(x),y=x^4-4x^2dot`then y-axis, and the line `x=t ,`where `(0lt=tlt=2)`is `k`times the area bounded by `y=f(x),y=2x^2-x^3,y-a xi s ,`and line `x=t(w h e r e0lt=tlt=2)dot` |
|
Answer» Correct Answer - `(1)/(k+1)(x^(4)-kx^(3)+2(k-2)x^(2))` According to the given conditions `overset(t)underset(0)int[f(x)-(x^(4)-4x^(2))]dx=koverset(t)underset(0)int[(2x^(2)-x^(3))-f(x)]dx` Differentiating both sides w.r.t. we get `f(t)-(t^(4)-4t^(2))=k(2t^(2)-t^(3)-f(t))` `"or "(1+k)f(t)=k2t^(2)-kt^(2)+t^(4)-4t^(2)` `rArr" "f(t)=(1)/(k+1)[t^(4)-kt^(3)+(2k-4)t^(2)]` Hence, required f is given by `f(x)=(1)/(k+1)(x^(4)-kx^(3)+2(k-2)x^(2)).` |
|