Saved Bookmarks
| 1. |
Find the derivative of f(x) from the first principal, where f(x) is xsinx |
| Answer» Let f(x) =xsinx. =df(x)/dx=limf(x+h)-f(x)/h=lim(x+h)-xsinx/h = lim(x+h)(sinxcosh+cosxsinh)-xsinx/h [•.•sin(x+y)=sinxcosy+cosxsiny]=lim xsinxcosh-xsinx+xcosxsinh+h(sinxcosh+sinhcosx)/h=lim xsinx(cosh-1)+xcosxsinh+h(sinxcosh+sinhcosx)/h. =lim xsinx(cosh-1)/h+lim xcosx sinh/h+lim(sinxcosh+sinhcosx)=xcosx+sinx. Here lim in the complete solution.. h-0 | |