1.

Find the dimensions of `axxb` in the relation ` p= a sqrtt - bx^2`, where x is distance, t is time and P is power.

Answer» Correct Answer - `M^2L^2T^(-13//2)`
`P = a sqrt - bx^2`
`asqrtt = P = ML^2T^(-3)`
`a =(P)/(sqrtt) =ML^2T^(-7//2)`
Again, `bx^2 = P, b=(P)/(x^2) = (ML^2T^(-3))/(L^2) = MT^(-3)`
`axxb = (ML^2T^(-7//2))xx(MT^(-3))`
`=M^2L^2 T^(-13//2)`


Discussion

No Comment Found