InterviewSolution
Saved Bookmarks
| 1. |
Find the direction angles of the line with the X-axis which makes direction angles of `135^(@)` and `45^(@)` with Y-axes Z-axes respectively. |
|
Answer» Let l,m,n be the direction cosines ofline L. Let `p(x,y,z)` be any point on line L such that l `(OP)=r` `:. Barr=bar(OP)=xhatiyhatj+zhatk` If `alpha,beta, gamma` be the direction angles of the line OP, then `l = cos alpha, m= cos beta, n= cos gamma` Now, `bar(OP)*hati=(xi+yj+2zk)*i=x " "...(1)` Also, `bar(OP)* hati=|bar(OP)|.cos alpha= r cos alpha" ".....(2)` `:.` From (1) and (2), `x= r cos alpha` Similarly we have `y=r cos beta and z=r cos gamma.` Consider `x^(2)+y^(2)+z^(2)=r^(2)(cos^(2) alpha+cos^(2) beta + cos^(2) gamma)` `:. r^(2)=r^(2)(l^(2)+m^(2)+n^(2))` `:. l^(2)+m^(2)+n^(2)=1` Given : `beta =135^(@), gamma= 45^(@), alpha?` We have `cos^(2)+cos^(2)(135^(@))+cos^(2)(45^(@))=1` `:. os^(2) alpha+ (-(1)/(sqrt(2)))^(2)+((1)/(sqrt(2)))=1` `:. cos^(2) alpha(1)/(2)+(1)/(2)=1` `:. cos^(2)alpha=0` `rArr alpha=90` Thus, the direction angle of the line with X-axis is `90^(@)` |
|