1.

`int (d theta)/(sin theta +sin 2theta)`

Answer» Let `I= int (d theta)/(sin theta + sin 2 theta)`
`= int (d theta)/(sint heta +2 sin theta* cos theta)`
`=int (d theta)/(sin theta (1+2cos theta))`
`= int (sin theta * d theta)/(sin^(2) theta*(1+2cos theta))`
`= int (sin theta*d theta)/((1-cos^(2) theta) *(1+2 cos theta))`
`= int(sin theta* d theta)/((1+cos theta)(1-cos theta)(1+2 cos theta))`
Let `cos thetat= t :. sin theta * d theta = dt`
`:. I= int (-dt)/((1+t)(1-t)(1+2t))`
Consider `(-1)/((1+t)(1-t)(1+2t))=(A)/(1+t)+(B)/(1-t)+(C)/(1+2t)`
`:. -1A(1-t)(1+2t)+B(1+t)(1+2t)+C(1+t)(1-t)`
Put t=1
`:. -1=B(2xx3)`
`:. B=(-1)/(6)`
Put `t=-1`
`:. -1=a(2)(-1)`
`:. A=(1)/(2)`
Put `t=-(1)/(2)`
`:. -1 =C (-1(1)/(2))(1+(1)/(2))`
`:. -1=C((1)/(2))((3)/(2))=C ((3)/(4))`
`:. C=(-4)/(3)`
`:. (-1)/((1+t)(1-t)(1+2r))=((1)/(2))/(1+t)+(-(1)/(6))/(1-t)+(-(4)/(3))/(1+3t)`
`:. I= int (-dt)/((1+t)(1-t)(1+2t))`
`= int [(1)/(2(1+t))-(1)/(6(1-t))-(4)/(3(1+2t))]*dt`
`=(1)/(2)int (1)/(1+t)*dt -(1)/(6) int (1)/(1-t)dt-(4)/(3)int (1)/(1+2t)dt`
`=(1)/(2) log |(1+t)|+(1)/6)log |(1-t)|-(4)/(3xx2)log|(1+2t)|+c`
`I=(1)/(2)log|1+cos theta|+(1)/(6)log|`
`1-cos theta| -(2)/(3)log |1+2cos theta|+c`


Discussion

No Comment Found

Related InterviewSolutions