Saved Bookmarks
| 1. |
Find the discriminate of quadratic equation 3x2 - 2\(\sqrt2\) - 2\(\sqrt3\) = 0. |
|
Answer» Given quadratic equation is 3x2 - 2\(\sqrt2\) - 2\(\sqrt3\) = 0 By comparing with ax2 + bx + c = 0 we get a = 3, b = -2\(\sqrt2\) and c = -2\(\sqrt3\) \(\therefore\) Discriminant = b2 - 4ac = (-2\(\sqrt2\))2 - 4 x 3 x - 2\(\sqrt3\) = 8 + 24\(\sqrt3\) = 8(1 + 3\(\sqrt3\)) > 0 |
|