1.

Find the discriminate of quadratic equation 3x2 - 2\(\sqrt2\) - 2\(\sqrt3\) = 0.

Answer»

Given quadratic equation is

3x2 - 2\(\sqrt2\) - 2\(\sqrt3\) = 0

By comparing with ax2 + bx + c = 0 we get

a = 3, b = -2\(\sqrt2\) and c = -2\(\sqrt3\)

\(\therefore\) Discriminant = b2 - 4ac

 = (-2\(\sqrt2\))2 - 4 x 3 x - 2\(\sqrt3\)

 = 8 + 24\(\sqrt3\) 

= 8(1 + 3\(\sqrt3\)) > 0



Discussion

No Comment Found

Related InterviewSolutions