1.

Find the domain and range of each of the following real valued functions : f(x)= (ax+b)/(bx-a)f(x) = \(\frac{ax+b}{bx-a}\)

Answer»

f(x) = (ax+b)/(bx-a)

Clearly, 

f(x) is defined for all real values of x, 

Except for the case when bx – a = 0 or x = \(\frac{a}{b}\)

When  x = \(\frac{a}{b}\)

f(x) will be undefined as the division result will be indeterminate. 

Thus, 

Domain of f = R – \(\{\frac{a}{b}\}\)

Let f(x) = y 

⇒ ax + b = y(bx – a) 

⇒ ax + b = bxy – ay 

⇒ ax – bxy = –ay – b 

⇒ x(a – by) = –(ay + b)

∴ x = \(-\frac{(ay+b)}{a-by}\)

Clearly, 

when a – by = 0 or y = \(\frac{a}{b}\)

x will be undefined as the division result will be indeterminate. 

Hence, 

f(x) cannot take the value \(\frac{a}{b}\).

Thus, 

Range of f = R – \(\{\frac{a}{b}\}\)



Discussion

No Comment Found