

InterviewSolution
1. |
Find the domain and range of each of the following real valued functions : f(x)= (ax+b)/(bx-a)f(x) = \(\frac{ax+b}{bx-a}\) |
Answer» f(x) = (ax+b)/(bx-a) Clearly, f(x) is defined for all real values of x, Except for the case when bx – a = 0 or x = \(\frac{a}{b}\). When x = \(\frac{a}{b}\), f(x) will be undefined as the division result will be indeterminate. Thus, Domain of f = R – \(\{\frac{a}{b}\}\) Let f(x) = y ⇒ ax + b = y(bx – a) ⇒ ax + b = bxy – ay ⇒ ax – bxy = –ay – b ⇒ x(a – by) = –(ay + b) ∴ x = \(-\frac{(ay+b)}{a-by}\) Clearly, when a – by = 0 or y = \(\frac{a}{b}\) , x will be undefined as the division result will be indeterminate. Hence, f(x) cannot take the value \(\frac{a}{b}\). Thus, Range of f = R – \(\{\frac{a}{b}\}\) |
|