InterviewSolution
Saved Bookmarks
| 1. |
Find the domain and range of the function given by `f(x)=1/(sqrt(x-[x]))` |
|
Answer» We have, `f(x)=(1)/(sqrt(x-[x]))` We know that `0lex-[x]lt1"for all "x""inR` and `x-[x]=0"for all "x""inZ`. `:.0ltx-[x]lt1" for all "x""inR-Z` `impliesf(x)=(1)/(sqrt(x-[x]))` exists for all `x""inR-Z` `implies"dom "(f)=R-Z`. Also, `0ltx-[x]lt1 "for all "x""inR-Z` `implies0ltsqrt(x-[x])lt1 "for all "x""inR-Z` `implies1lt(1)/(sqrt(x-[x]))ltoo "for all "x""inR-Z` `implies1ltf(x)ltoo" for all "x""inR-Z` `implies"range "(f)=(1,oo)`. Hence, dom `(f)=R-Z" and range "(f)=(1,oo)`. |
|