InterviewSolution
Saved Bookmarks
| 1. |
Find the domain of the following following functions: (a) f(x)=(sin^(-1))/(x) (b)f(x)=sin^(-1)(|x-1|-2) (c ) f(x)=cos^(-1)(1+3x+2x^(2)) (d ) f(x)=(sin^(-1)(x-3))/(sqrt(9-x^(2))) (e ) f(x)="cos"^(-1)((6-3x)/(4))+"cosec"^(-1)((x-1)/(2)) (f) f(x)=sqrt("sec"^(-1)((2-|x|)/(4))) |
|
Answer» `x in [-1,0)cup (0,1]` (b) `f(x)=sin^(-1)(|x-1|-2)` SINCE the domain of `sin^(-1)x` is `[-1,1],f(x)` is defined if `-1 le |x-1|-2 le 1` or `1 le |x-1| le 3` i.e., `-3 le x-1 le -1 " or " 1 lex -1 le 3` i.e., `-2 le x le 0 " or " 2 le x le 4` or domain `=[-2,0]cup [2,4]` (c ) `-1 le 1+3x+2x^(2) le 1` or ` 2x^(2)+3x+1 GE -1` or` 2x^(2) +3x+2 ge 0 "(1)" ` and`2x^(2) +3x le 0 "(2)" ` From equation (2), `2x^(2) +3x le 0" or " 2x(x+(3)/(2)) le 0` or `(-3)/(2) le x le 0 " or " x in [-(3)/(2),0]` In equation (1), we get imaginary root for `2x^(2)+3x+2=0 " and " 2x^(2)+3x+2 ge 0` for all x. THEREFORE, domain of function`=[-(3)/(2),0]` (d) To define `f(x), 9-x^(2) gt 0 " or " -3 lt x lt 3 "(1) " ` `-1 le (x-3) le 1 " or " 2 le x le 4 "(2)" ` From equations (1) and (2), `2 le x lt 3," i.e., " x in [2,3).` (e ) `f(x)="cos"^(-1)((6-3x)/(4))+"cosec"^(-1)((x-1)/(2))` For ` "cos"^(-1)((6-3x)/(4)),-1 le (6-3x)/(4) le 1` or `-4 le 6-3x le 4` or `-10 le -3x le -2` or `2//3 le x le 10//3 "(1)" ` For ` "cosec"^(-1)((x-1)/(2)),(x-1)/(2) le -1 " or "(x-1)/(2) ge 1` i.e., `xle -1 " or " x ge 3 "(2)" ` From equation (1) and (2), ` x in [3,(10)/(3)].` (f)`f(x)=sqrt("sec"^(-1)((2-|x|)/(4)))` `sec^(-1)` function always TAKES positive values which are `[0,pi]-{pi/2}.` Hence, the given function is defined if `(2-|x|)/(4) le -1 " or " (2-|x|)/(4) ge 1` i.e., `|x| ge 6 " or " |x| le -2 i.e.,x in (-oo,-6] cup [6,oo)` |
|