InterviewSolution
Saved Bookmarks
| 1. |
Find the energy equivalent of one atomic mass unit, first in Joules and then in MeV. Using this, express the mass defect of `._(8)^(16)O` in `MeV//c^(2)`. |
|
Answer» `1u = 1.6605xx10^(-27)kg` To convert it into energy units, we multiply it by `c^(2)` and find that energy equivalent `= 1.6605xx10^(-27)xx(2.9979xx10^(8))^(2)"kg m"^(2)//s^(2)` `= 1.4924xx10^(-10)J` `=(1.4924xx10^(-10))/(1.602xx10^(-19))eV` `= 0.9315xx10^(9) eV=931.5 MeV` or, l u `= 931.5 MeV//c^(2)` For `._(8)^(16)O, Delta M = 0.13691 u = 0.13691xx931.5 MeV//c^(2)=127.5 MeV//c^(2)` The energy needed to separate `._(8)^(16)O` into its constituents is thus `127.5 MeV//c^(2)`. |
|