

InterviewSolution
Saved Bookmarks
1. |
Find the equation of a straight line in the plane `vecr.vecn=d` which is parallel to `vecr.vecn=d("where "vecn.vecb=0)`.A. `vecr=veca+((d-veca.vecn)/(n^(2)))vecn+lamdavecb`B. `vecr=veca+((d-veca.vecn)/(n))vecn+lamdavecb`C. `vecr=veca+((veca.vecn-d)/(n^(2)))vecn+lamdavecb`D. `vecr=veca+((veca.vecn-d)/(n))vecn+lamdavecb` |
Answer» Correct Answer - a Foot of the perpendicular from point `A(veca)` on the plane `vecr*vecn=d` is `veca+ ((d-veca*vecn))/(|vecn|^(2))vecn` Therefore, equation of the line parallel to `vecr=veca+lamdavecb` in the plane `vecr*vecn =d` is given by `" "vecr=veca+ ((d-veca*vecn))/(|vecn|^(2))vecn+lamdavecb` |
|