1.

Find the equation of tangent to the parabola: y2 = 12x from the point (2, 5)

Answer»

Given equation of the parabola is y2 = 12x. Comparing this equation with y2 = 4ax, we get 

⇒ 4a = 12

⇒ a = 3 

Equation of tangent to the parabola y2 = 4ax having slope m is 

y = mx + \(\frac {a}{m}\)

Since the tangent passes through the point (2, 5) 

⇒ 5 = 2m + 3/m

⇒ 5m = 2m2 + 3 

⇒ 2m2 – 5m + 3 = 0 

⇒ 2m2 – 2m – 3m + 3 = 0 

⇒ 2m(m – 1) – 3(m – 1) = 0 

⇒ (m- 1)(2m – 3) = 0

⇒ m = 1 or m = 3/2

These are the slopes of the required tangents. 

By slope point form, y – y1 = m(x – x1), the equations of the tangents are

⇒ y – 5 = 1(x – 2) and y – 5 = 3/2 (x – 2) 

⇒ y – 5 = x – 2 and 2y – 10 = 3x – 6 

⇒ x – y + 3 = 0 and 3x – 2y + 4 = 0



Discussion

No Comment Found