InterviewSolution
Saved Bookmarks
| 1. |
Find the equation of tangents to the curve `4x^2-9y^2=1`which are parallel to `4y=5x+7.`A. `24y-30x=17`B. `30y-24x=+-sqrt(161)`C. `24y-30x=+-sqrt(161)`D. none of these |
|
Answer» Let `m` be the slope of the tangent to `4x^(2)-9y^(2)=1` Then, `m=("Slope of the line" 4y=5x+7)=5//4` We have, `(x^(2))/(1//4)-(y^(2))/(1//9)=1` or, `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`, where `a^(2)=(1)/(4)`, `b^(2)=(1)/(9)` The equations of the tangents are `y=mx+-sqrt(a(2)m^(2)-b^(2))` `impliesy=(5)/(4)x+-sqrt((25)/(64)-(1)/(9))` `implies30x-24y+-sqrt(161)=0implies24y-30x=+-sqrt(161)` |
|