1.

Find the equation of the ellipse in standard form if: the latus rectum has length 6 and foci are (±2, 0).

Answer»

Given, the length of the latus rectum is 6, and co-ordinates of foci are (±2, 0). The foci of the ellipse are on the X-axis.

Let the required equation of ellipse be \(\frac {x^2}{a^2} + \frac {y^2}{b^2} = 1\) where a > b.

Length of latus rectum = 2b2/a

2b2/a =6

b2 = 3a …..(i) 

Co-ordinates of foci are (±ae, 0) 

ae = 2

a2 e2 = 4 …..(ii)

Now, b2 = a2 (1 – e2)

b2 = a2 – a2 e2 

3a = a2 – 4 …..[From (i) and (ii)] 

a2 – 3a – 4 = 0 

a2 – 4a + a – 4 = 0 

a(a – 4) + 1(a – 4) = 0 

(a – 4) (a + 1) = 0

a – 4 = 0 or a + 1 = 0 

a = 4 or a = -1 

Since a = -1 is not possible, 

a = 4

a2 = 4

Substituting a = 4 in (i), we get b = 3(4) = 12

The required equation of ellipse is \(\frac {x^2}{16}+\frac{y^2}{12}=1\)



Discussion

No Comment Found