

InterviewSolution
Saved Bookmarks
1. |
Find the equation of the line, which makes intercepts `3` and 2 on the x and y axes respectively. |
Answer» `xcostheta +4sintheta = p` let p=normal distance from origin `theta`=angle normal makes with +ve x direction given `P= 4` `theta=15^@` since we know that `cos2theta=2costheta^2-1` `take theta=15^@` `cos30^@=2cos^2 15-1` `sqrt 3/2+1=2cos^2 15` `cos15=sqrt((sqrt 3/4+2)` now `(sqrt 3+1)^2 =3+2sqrt 3+1` `=sqrt((sqrt 3 +1)^2/2 -2+2)/4 ` `cos15^@=sqrt((sqrt3+1)^2)/8` `=(sqrt3 +1)/(2sqrt2)` `sin15=sqrt1-cos^2 15` `=sqrt(1-(sqrt3+2)/4)` `=sqrt(4-(sqrt3+))/4` `sin15=sqrt(2-15)/4` `(sqrt3-1)^2=1+3-2sqrt3` `-sqrt3=((sqrt3-1)^2-4)/2` `sin15=sqrt(2+((sqrt3-1)^2/2)-2)/4` `sin15=sqrt(sqrt3-1)^2)/8` `=(sqrt3-1)/(2sqrt2)` `xcostheta+4sintheta=P` `x((sqrt3+1)/(2sqrt2))+4((sqrt3-1)/(2sqrt2)) =4` `x((sqrt3+1))+4((sqrt3-1))=8sqrt2` |
|