

InterviewSolution
Saved Bookmarks
1. |
Prove that the locus of the centroid of the triangle whose vertices are`(acost ,asint),(bsint ,-bcost),`and `(1,0)`, where `t`is a parameter, is circle.A. `(3x+1)^(2) + (3y)^(2) = a^(2) - b^(2)`B. `(3x - 1)^(2) = a^(2) - b^(2)`C. `(3x -1)^(2) + (3y)^(2) = a^(2) + b^(2)`D. `(3x + 1)^(2) + (3y)^(2) = a^(2) + b^(2)` |
Answer» Let (h , k) be the coordinates of the centroid . Then , h = `( a cos t + b sin t + 1)/(3) ` and `k = (a sin t - b cos t + 0)/(3)` `implies 3h - 1 = a cos t + b sin t ` and 3k = a sin t - b cos t `implies (3h-1)^(2) + (3k)^(2) = (a cos t + b sint)^(2) + (a sin t- b cos t)^(2)` `implies (3h-1)^(2) + (3k)^(2) = a^(2) + b^(2)` Hence , the locus of (h , k) is `(3x-1)^(2) + (3y)^(2) = a^(2) + b^(2)` |
|