InterviewSolution
Saved Bookmarks
| 1. |
Find the general solution of each of the equations : (i) `4sin^(2)x=1` (ii) `2 cos^(2)x=1` (iii) `cot^(2)x=3` |
|
Answer» (i) `4sin^(2)x=1rArrsin^(2)x=(1)/(4)=((1)/(2))^(2)="sin"^(2)(pi)/(6)` `rArrsin^(2)x="sin"^(2)(pi)/(6)` `rArrx={npi+-(pi)/(6)}` , where `ninI` Hence , the general solution is x = `(npi+-(pi)/(6))`, `n inI`. (ii) `2cos^(2)x=1rArrcos^(2)x=(1)/(2)=((1)/(sqrt(2)))^(2)="cos"^(2)(pi)/(4)` `rArr cos ^(2)x="cos"^(2)(pi)/(4)` `rArrx=(npi+-(pi)/(4))`, where `ninI`. Hence , the general solution is x = `(npi+-(pi)/(4)),ninI`. (iii) `cot^(2)x=3rArrtan^(2)x=(1)/(3)=((1)/(sqrt(3)))^(2)="tan"^(2)(pi)/(6)` `rArrtan^(2)x=" tan "^(2)(pi)/(6)` `rArrx=(npi+-(pi)/(6))`, where `ninI`. Hence , the general solution is `(npi+-(pi)/(6))`, where `ninI`. |
|