1.

Solve : `secx-tan x=sqrt(3)`.

Answer» We have `secx-tanx=sqrt(3)rArr(1)/(cosx)-(sinx)/(cosx)=sqrt(3)rArr(1-sinx)=sqrt(3)cosx`
`rArrsqrt(3)cosx+sinx=1`.
Thus , the given equation becomes
`sqrt(3)cosx+sinx=1`.
Dividing both sides of (i) by `sqrt((sqrt(3))^(2)+1^(2))` , i .e by 2, we get
`(sqrt(3))/(2)cosx+(1)/(2)sinx=(1)/(2)`
`rArrcosx"cos"(pi)/(6)+sinx" sin "(pi)/(6)=(1)/(2)`
`rArrcos(x-(pi)/(6))="cos"(pi)/(3)`
`rArr(x-(pi)/(6))=2npi+-(pi)/(3), "where "n in I[becausecostheta=cosalpharArrtheta=2npi+-alpha]`
`rArr(x-(pi)/(6))=(2npi+(pi)/(3))or(x-(pi)/(6))=(2npi-(pi)/(3))`
`rArrx=2npi+(+(pi)/(3)+(pi)/(6))orx=2npi+(-(pi)/(3)+(pi)/(6))"where "ninI`
`rArrx=(2npi+(pi)/(2))orx=(2npi-(pi)/(6)), "where "ninI`
`rArrx=(2npi-(pi)/(6)), "where"n inI`
`[because"secx is not defined when x"=(2npi+(pi)/(2))]`.
Hence , the general solution is `x=(2npi-(pi)/(6)), "where"ninI`.


Discussion

No Comment Found