1.

Find the general solution of sin x + sin 3x + sin 5x = 0.

Answer»

sin x + sin 3x + sin 5x = 0 

∴ (sin 5x + sin x) + sin 3x = 0

∴ 2sin \((\frac{5x+x}{2})\) cos \((\frac{5x-x}{2})\) + sin 3x = 0

∴ 2sin 3x cos 2x + sin 3x = 0

∴ sin 3x (2cos 2x + 1) = 0

∴ sin 3x = 0 or 2cos 2x + 1 = 0

∴ sin 3x = 0 or 2cos 2x = \(-\frac{1}{2}\)

∴ sin 3x = 0 or cos 2x = - cos \(\frac{π}{3}\) = cos \((π-\frac{π}{3})\)

∴ sin 3x = 0 or cos 2x = cos \(\frac{2π}{3}\)

Since, sin θ = 0 implies θ = nπ and cos θ = cos α implies θ = 2nπ ± α , n ∈ Z.

∴ 3x = nπ or 2x = 2mπ ± \(\frac{2π}{3}\)

∴ the required general solution is x = \(\frac{nπ}{3}\) or x = mπ ± \(\frac{π}{3}\) where n, m ∈ Z.



Discussion

No Comment Found

Related InterviewSolutions