1.

Find the general solution of the equation sin x = tan x.

Answer»

sin x = tan x

∴ sin x = \(\frac{sin\,x}{cos\,x}\)

∴sin x cos x - sin x = 0

∴ sin x (cos x - 1) = 0

∴ sin x = 0 or cos x = 1 

∴ sin x = sin 0 or cos x = cos 0 

Since, sin θ = 0 implies θ = nπ and cos θ = cos α implies θ = 2nπ ± α , n ∈ Z.

∴ x = nπ or x = 2mπ ± 0

∴ The required general solution is x = nπ or x = 2mπ, where n, m ∈ Z.



Discussion

No Comment Found

Related InterviewSolutions