InterviewSolution
Saved Bookmarks
| 1. |
Find the general solution of the following differential equation:\(\frac{dx}{dy} = e^{x -y}+ x^2e^{-y}\) |
|
Answer» \(\frac{dx}{dy} = e^{x -y}+ x^2e^{-y}\) ⇒ \(dy = (e^{x-y} + x^2e^{-y})dx\) ⇒ \(dy = \frac{(e^x + x^2) }{e^y}dx\) ⇒ \(e^y \, dy = (e^x + x^2)dx\) ⇒ \(\int e^y dy = \int (e^x + x^2)dx\) \(\therefore \,e^y = e^x + \frac{x^3}{3}+ C\), which is the required solution. |
|