1.

Find the independent term in the expansion of `(5x^(2)-(1)/(x^(4)))^(6)`A. 8250B. 8560C. 9250D. 9375

Answer» Correct Answer - D
In the expanssion `(ax^(p)+(b)/(x^(q)))^(n)` , the independent terms is `T_(r+1)`, where `r=(np)/(p+q)`
Here, `r=(6xx2)/(6)=2`
The independent term is `T_(3)`
`T_(3)=T_(2+1)=""^(6)C_(2)(5x^(2))^(4)((-1)/(x^(4)))^(2)`
`5^(4)xx15=9375`


Discussion

No Comment Found