1.

Find the intervals in which the following functions are increasing or decreasing.(i) f(x) = 10 − 6x − 2x2(ii) f(x) = x2 + 2x − 5(iii) f(x) = 6 − 9x − x2(iv) f(x) = 2x3 − 12x2 + 18x + 15(v) f(x) = 5 + 36x + 3x2 − 2x3(vi) f(x) = 8 + 36x + 3x2 − 2x3(vii) f(x) = 5x3 − 15x2 − 120x + 3(viii) f(x) = x3 − 6x2 − 36x + 2(ix) f(x) = 2x3 − 15x2 + 36x + 1(x) f(x) = 2x3 + 9x2 + 12x + 20(xi) f(x) = 2x3 − 9x2 + 12x − 5(xii) f(x) = 6 + 12x + 3x2 − 2x3(xiii) f(x) = 2x3 − 24x + 107(xiv) f(x) = −2x3 − 9x2 − 12x + 1(xv) f(x) = (x − 1) (x − 2)2(xvi) f(x) = x3 − 12x2 + 36x + 17(xvii) f(x) = 2x3 − 24x + 7(xviii) fx=310x4-45x3-3x2+365x+11(xix) f(x) = x4 − 4x(xx) fx=x44+23x3-52x2-6x+7(xxi) f(x) = x4 − 4x3 + 4x2 + 15(xxii) f(x) = 5x32-3x52, x > 0(xxiii) f(x) = x8 + 6x2(xxiv) f(x) = x3 − 6x2 + 9x + 15(xxv) fx=x(x-2)2(xxvi) fx=3x4-4x3-12x2+5(xxvii) fx=32x4-4x3-45x2+51(xxviii) fx=log2+x-2x2+x, x∈R(xxix) fx=x44-x3-5x2+24x+12

Answer» Find the intervals in which the following functions are increasing or decreasing.

(i) f(x) = 10 − 6x − 2x2



(ii) f(x) = x2 + 2x − 5



(iii) f(x) = 6 − 9xx2



(iv) f(x) = 2x3 − 12x2 + 18x + 15



(v) f(x) = 5 + 36x + 3x2 − 2x3



(vi) f(x) = 8 + 36x + 3x2 − 2x3



(vii) f(x) = 5x3 − 15x2 − 120x + 3



(viii) f(x) = x3 − 6x2 − 36x + 2



(ix) f(x) = 2x3 − 15x2 + 36x + 1



(x) f(x) = 2x3 + 9x2 + 12x + 20



(xi) f(x) = 2x3 − 9x2 + 12x − 5



(xii) f(x) = 6 + 12x + 3x2 − 2x3



(xiii) f(x) = 2x3 − 24x + 107



(xiv) f(x) = −2x3 − 9x2 − 12x + 1



(xv) f(x) = (x − 1) (x − 2)2



(xvi) f(x) = x3 − 12x2 + 36x + 17



(xvii) f(x) = 2x3 − 24x + 7



(xviii) fx=310x4-45x3-3x2+365x+11



(xix) f(x) = x4 − 4x



(xx) fx=x44+23x3-52x2-6x+7



(xxi) f(x) = x4 − 4x3 + 4x2 + 15



(xxii) f(x) = 5x32-3x52, x > 0



(xxiii) f(x) = x8 + 6x2



(xxiv) f(x) = x3 − 6x2 + 9x + 15



(xxv) fx=x(x-2)2



(xxvi) fx=3x4-4x3-12x2+5



(xxvii) fx=32x4-4x3-45x2+51



(xxviii) fx=log2+x-2x2+x, xR



(xxix) fx=x44-x3-5x2+24x+12


Discussion

No Comment Found