Saved Bookmarks
| 1. |
Find the least value of n for which1 + 3 + 32 + ⋯ + 3n−1 > 1000 |
|
Answer» We have, 1 + 3 + 32 + ⋯ + 3n−1 > 1000 ⇒ 30 + 31 + 31 + ⋯ 3n−1 > 1000 ⇒ 30\(\big(\frac{3^n − 1}{3 − 1}\big)\) > 1000 ⇒ 3n − 1 > 2000 ⇒ 3n > 2001 Least value of n, which satisfies this inequality is n = 7 (∵ 37 = 2187) Hence, least value of n = 7. |
|