1.

Find the least value of n for which1 + 3 + 32 + ⋯ + 3n−1 > 1000

Answer»

We have,

1 + 3 + 32 + ⋯ + 3n−1 > 1000

⇒ 30 + 31 + 31 + ⋯ 3n−1 > 1000

⇒ 30\(\big(\frac{3^n − 1}{3 − 1}\big)\) > 1000

⇒ 3n − 1 > 2000

⇒ 3n > 2001

Least value of n, which satisfies this inequality is n = 7 (∵ 37 = 2187)

Hence, least value of n = 7.



Discussion

No Comment Found