1.

Find the local extremum values of the following functions : f(x) = – (x – 1)3(x + 1)2

Answer»

f(x) = – (x – 1)3(x + 1)2 

f’(x) = – 3(x – 1)2(x + 1)2 – 2(x – 1)3(x + 1) 

= – (x – 1)2(x + 1)(3x + 3 + 2x – 2) 

= – (x – 1)2(x + 1)(5x + 1) 

f’’(x) = – 2(x – 1)(x + 1)(5x + 1) – (x – 1)2(5x + 1) – 5(x – 1)2(x – 1) 

For maxima and minima, 

f'(x) = 0 – (x – 1)2(x + 1)(5x + 1) = 0 

x = 1, – 1, – 1/5 

Now,

f’’(1) = 0 

x = 1 is inflection point 

f’’(– 1) = – 4× – 4 = 16 > 0 

x = – 1 is point of minima 

f’’(\(-\frac{1}{5}\)) = – 5(36/25) x 4/5 

= – 144/25 < 0 

x =\(-\frac{1}{5}\) is point of maxima 

Hence, 

local max value = f(\(-\frac{1}{5}\)) = \(\frac{3456}{3125}\)

local min value = f(–1) = 0



Discussion

No Comment Found