1.

Find the number of 10-tuples (a1; a2;....., a10) of integers such that |a1| ≤ 1 and a21 + a22 + a23+ ...... + a210 - a1a2 - a2a3 - a3a4 -....  a9a10 - a10a1 = 2.

Answer»

Let a11 = a1. Multiplying the given equation by 2 we get 

(a1 - a2)2 + (a2 - a3)2 + .... (a10 -  a1)2 = 4. 

Note that if ai - ai+1 = ±2 for some i = 1; .....10, then aj - aj+1 = 0 for all j  i which contradicts the equality 10i=1(ai - ai+1) = 0. Therefore ai - ai+1 = 1 for exactly two values of i in {1, 2....10}, ai - ai+1 = -1 for two other values of i and ai - ai+1 = 0 for all other values of i. There are (10, 2) x (8, 2) = 45 x 28 possible ways of choosing these values. Note that a1 = -1, 0 or 1, so in total there are 3 x 45 x 28 possible integer solutions to the given equation.



Discussion

No Comment Found

Related InterviewSolutions