

InterviewSolution
Saved Bookmarks
1. |
Find the number of odd proper divisors of `3^pxx6^mxx21^ndot`A. `(m+1)(n+1)(p+1)-1`B. `(m+n+p+1)(p+1)-1`C. `(m+1)(n+1)(p+1)-2`D. none of these |
Answer» We have, `3^(m)xx6^(n)xx21^(p)=3^(m)xx2^(n)xx3^(n)xx3^(p)xx7^(p)=2^(n)xx3^(m+n+p)xx7^(p)` Clearly, Number of odd proper divisors = Number of ways of selecting any number of `3^(s)and7^(s)` from (m+n+p) identical `3^(s)andP` identical `7^(s)`. `=(m+n+p+1)(p+1)-1`. |
|