1.

Find the points of local maxima or local minima, if any, of the following functions, using the first derivative test. Also, find the local maximum or local minimum values, as the case may be :f(x) = \(\frac{x}{2}\)+\(\frac{2}{x}\), x > 0

Answer»

We have, 

f(x) = \(\frac{x}{2}\)+\(\frac{2}{x}\), x > 0

Differentiate w.r.t x, we get,

f'(x) = \(\frac{1}{2}\)+\(\frac{2}{x^2}\), x > 0

For the point of local maxima and minima,

f’(x) = 0

\(\frac{1}{2}\) - \(\frac{2}{x^2}\) = 0

= x2 – 4 = 0

= x = \(\sqrt4\) , \(-\sqrt4\)

= x = 2, – 2 

At x = 2 f’(x) changes from –ve to + ve 

Since, x = 2 is a point of Minima 

Hence, local min value f (2) = 2



Discussion

No Comment Found