1.

Find the principal value of sin–1 (\(\frac{1}{\sqrt2}\))

Answer»

Let  sin–1 (\(\frac{1}{\sqrt2}\)) = x

∴ sin x = \(\frac{1}{\sqrt2}\)

∴ sin x = -sin \(\frac{π}{4}\)

The principal value branch of sin–1 x is [\(-\frac{π}{2},\) \(\frac{π}{2}\)] and \(-\frac{π}{2}\) ≤ \(-\frac{π}{4}\) ≤ \(\frac{π}{2}\)

Hence, the required principal value of x is\(-\frac{π}{4}\)



Discussion

No Comment Found

Related InterviewSolutions