1.

Find the principal value of the following :\(\sin\begin{Bmatrix}\frac{\pi}{3}-\sin^{-1}\left(\frac{-1}{2}\right)\end{Bmatrix}\)

Answer»

\(\sin\begin{Bmatrix}\frac{\pi}{3}-\sin^{-1}\left(\frac{-1}{2}\right)\end{Bmatrix}\) [Formula: sin -1(-x) = -sin -1x ]

\(=\sin\begin{Bmatrix}\frac{\pi}{3}-\left(-\sin^{-1}\frac{1}{2}\right)\end{Bmatrix}\)

\(=\sin\begin{Bmatrix}\frac{\pi}{3}+\sin^{-1}\left(\frac{1}{2}\right)\end{Bmatrix}\)

Putting value of sin -1\(\left(\frac{1}{2}\right)\)

\(=\sin\begin{Bmatrix}\frac{\pi}{3}+\frac{\pi}{6}\end{Bmatrix}\)

\(=\sin\frac{3\pi}{6}=\sin\frac{\pi}{2}=1\)



Discussion

No Comment Found