1.

Find the quadratic polynomial, sum of whose zeroes is 8 and their product is 12. Hence, find the zeroes of the polynomial.

Answer»

Let α and β be the zeroes of the required polynomial f(x). 

Then (α + β) = 8 and αβ = 12 

∴f(x) = x2 ˗ (α + β)x + αβ

⇒ f(x) = x2 ˗ 8x + 12 

Hence, 

required polynomial f(x) = x2 ˗ 8x + 12 

∴f(x) = 0 ⇒ x2 ˗ 8x + 12 = 0 

⇒ x2 ˗ (6x + 2x) + 12 = 0 

⇒ x2 ˗ 6x ˗ 2x + 12 = 0 

⇒ x (x – 6) – 2 (x – 6) = 0 

⇒ (x – 2) (x – 6) = 0 

⇒ (x – 2) = 0 or (x – 6) = 0

⇒ x = 2 or x = 6 

So, the zeroes of f(x) are 2 and 6.



Discussion

No Comment Found