InterviewSolution
Saved Bookmarks
| 1. |
Find the range of real number `alpha`for which the equation `z+alpha|z-1|+2i=0`has a solution. |
|
Answer» Let `z = x + iy` We have, `z+ alpha|z-1| + 2i=0` `rArr x + i(y+2) + alpha sqrt((x-1)^(2) + y^(2))=0` Equating real and imaginary parts `therefore y = - 2 and x + alpha sqrt((x-1)^(2)+4)=0` `therefore x^(2) = alpha^(2) (x^(2)-2x +5)` `therefore (1-alpha^(2))x^(2) + 2alpha^(2)x-5alpha^(2) = 0` Since x is real, `therefore D =b^(2) - 4ac ge 0` `rArr 4alpha^(4) + 20alpha^(2)(1-alpha^(2)) ge 0` `rArr 4alpha^(4) + 5alpha^(2) ge 0` `rArr 4alpha^(2)(alpha^(2) - (5)/(4)) le 0` `rArr (-sqrt(5))/(2) le alpha le(sqrt(5))/(2)`. |
|