| 1. |
Find the rank of the following matrix (i) \(\begin{pmatrix} 5 &6 \\[0.3em] 7 & 8 \end{pmatrix}\)(ii) \(\begin{pmatrix} 1 &-1 \\[0.3em] 3 & -6 \end{pmatrix}\) (iii) \(\begin{pmatrix} 1 &4 \\[0.3em] 2 & 8 \end{pmatrix}\)(iv) \( \begin{pmatrix} 2 & -1 & 1 \\ 3 & 1 & -5 \\ 1 & 1 & 1 \end{pmatrix} \) |
|
Answer» (i) Let A = \(\begin{pmatrix} 5 &6 \\[0.3em] 7 & 8 \end{pmatrix}\) order of A is 2 x 2. ρ(A) ≤ 2 Consider the second order minor \(\begin{vmatrix} 5 &6 \\[0.3em] 7 & 8 \end{vmatrix}\)= 40 – 42 = -2 ≠ 0 There is a minor of order 2, which is not zero. ρ(A) = 2 (ii) Let A = \(\begin{pmatrix} 1 &-1 \\[0.3em] 3 & -6 \end{pmatrix}\) Order of A is 2 × 2 ρ(A) ≤ 2 Consider the second order minor \(\begin{vmatrix} 1 & -1 \\[0.3em] 3 & -6 \end{vmatrix}\)= -6 + 3 = -3 ≠ 0 ρ(A) = 2 (iii) Let A = \(\begin{pmatrix} 1 &4 \\[0.3em] 2 & 8 \end{pmatrix}\) Since A is of order 2 × 2, ρ(A) ≤ 2 Now \(\begin{vmatrix} 1 & 4 \\[0.3em] 2 & 8 \end{vmatrix}\) = 8 – 8 = 0 Since second order minor vanishes ρ(A) ≠ 2 But first order minors, |1|, |4|, |2|, |8| are non zero. ρ(A) = 1 (iv) Let A =\( \begin{pmatrix} 2 & -1 & 1 \\ 3 & 1 & -5 \\ 1 & 1 & 1 \end{pmatrix} \) Oradar of A is 3 x 3 ρ(A) ≤ 3 Consider the third order minor \( \begin{pmatrix} 2 & -1 & 1 \\ 3 & 1 & -5 \\ 1 & 1 & 1 \end{pmatrix} \)= 2(1 + 5) + 1 (3 + 5) + 1(3 – 1) = 2(6) + 8 + 2 = 22 ≠ 0 There is a minor of order 3, which is non zero. ρ(A) = 3 |
|