

InterviewSolution
Saved Bookmarks
1. |
find the real value of x for which the matrix `=[(x+1,3,5),(1,x+3,5),(1,3,x+5)]` is non-singular. |
Answer» Let `A=[(x+1,3,5),(1,x+3,5),(1,3,x+5)]` `therefore|A|=[(x+1,3,5),(1,x+3,5),(1,3,x+5)]` Applying `C_(1)rarr C_(1)+C_(2)+C_(3),` then `therefore|A|=[(x+9,3,5),(x+9,x+3,5),(x+9,3,x+5)]` Applying `R_(2)rarrR_(2)-R_(1) and R_(3)rarrR_(3)-R_(1),` then `|A|=|(x+9,3,5),(0,x,0),(0,0,x)|=x^(2)(x+9)` `therefore` A is non-singular. `therefore" " |A|!=0 rArr x^(2)(x+9)!=0 ` `therefore" " x!=0,-9` Hence,` x in R - {0,-9}.` |
|