

InterviewSolution
Saved Bookmarks
1. |
Find the remainder when `sum_(r=1)^(n)r!` is divided by 15, if `n ge5`. |
Answer» Let `N=underset(r=1)overset(n)(sum)r!=1!+2!+3!+4!+5!+6!+7!+ . . .+n!` `=(1!+2!+3!+4!)+(5!+6!+7!+ . . .+n!)` `=33+(5!+6!+7!+ . . .+n!)` `implies(N)/(15)=(33)/(15)+((5!+6!+7!+ . . .+n!))/(15)` `=2+(3)/(15)+` interger [as `5!,6!`, . . . are divisible by 15] `=(3)/(15)+`Integer Hence, remainder is 3. |
|