1.

Find the roots of the equation ax2 + (4a2 – 3b)x – 12ab = 0.

Answer»

Given equation is ax+ (4a– 3b)x – 12ab = 0

⇒ ax+ 4a2x – 3bx – 12ab = 0

⇒ ax(x + 4a) – 3b(x + 4a) = 0

⇒ (x + 4a)(ax – 3b) = 0

Now, either x + 4a = 0 ⇒ x = -4a

Or, ax – 3b = 0 ⇒ x = \(\frac{3b}{a}\)

Thus, the roots of the given quadratic equation are x = \(\frac{3b}{a}\) and -4a respectively.



Discussion

No Comment Found