

InterviewSolution
Saved Bookmarks
1. |
Find the shortest distance between the following lines:`(x+1)/7=(y+1)/(-6)=(z+1)/1;(3-x)/(-1)=(y-5)/(-2)=(z-7)/1` |
Answer» Given lines are ltbr `(x+1)/(7) = (y+1)/(-6) = (z+1)/(1)` `(x1)/(7) = (y+1)/(-6)=(z+1)/(1)` and `(x-3)/(1) = (y-5)/(-2) = (z-7)/(1)` The direction ratios of first line are `(7,-6,1)` and it passes through the point `(-1,-1,-1)`. Therefore, the vector equation of the given line is `rArr vecr_(1) = -hati-hatj-hatk+lambda(7hati-6hatj+hatk)` Similarly the vector equati on of second line is : `vecr_(2)=3hati+5hatj+7hatk+mu(hati-2hatj+hatk)` which are in the form `vecr_(1) = veca_(1)+lambdavecb_(1)` and `vecr_(2)= veca_(2)+muvecb_(2)` where, `veca_(1) = -hati-hatj-hatk, vecb_(1) = vecb_(1) =7hati-6hatj+hatk` and `veca_(2) = 3hati+5hatj+7hatk,vecb_(2)=hati-2hatj+hatk` Now, `veca_(2)-veca_(1) = (3hati+5hatj+7hatk) - (-hati-hatj-hatk)` `= 4hati+6hatk+8hatk`, and `vecb_(1)xxvecb_(2) = 4hati+6hatj+8hatk`, and `vecb_(1)+vecb_(2) = |{:(hati,hatj,hatk),(7,-6,1),(1,-2,1):}|` `= hati(-6+2)-hatj(7-1)+hatk(-14+6)` `= -4hati-6hatj-8hatk` `|vecb_(1)xxvecb_(2)| = sqrt((-4)^(2)+(-6)^(2)+(-8)^(2))` `=sqrt(166+36+64) = sqrt(116) = 2sqrt(29)` `:.` Shortest distance betweent the given lines `d=|((vecb_(1)xxvecb_(2)).(veca_(2)-veca_(1)))/(|vecb_(1)xxvecb_(2)|)|` `=(|(-4hati-6hatj-8hatk).(4hati+6hatj+8hatk)|)/(2sqrt(29))` `= (|-16-36-64|)/(2sqrt(29))` `= (116)/(2sqrt(29)) = (58)/(sqrt(29)) = 2sqrt(29)` unit |
|