1.

Find the shortest distance between the lines (x - 3)/3 = (y - 8)/-1 = (z - 3)/1 and (x + 3)/-3 = (y + 7)/2 = (z - 6)/4.

Answer»

Given the line is 

(x - 3)/3 = (y - 8)/-1 = (z - 3)/1

(x + 3)/-3 = (y + 7)/2 = (z - 6)/4

The standard equation of a line 

x1 = 3, y1 = 8, z1 = 3

x2 = -3, y2 = -7, z2 = 6

Thus, the shortest distance 

d = |(x2 - x1,y2 - y1,z2 - z1),(a1,b1,c1),(a2,b2,c2)|

= |(6,15,-3),(3,-1,1),(-3,2,4)|/√((-6)2 + (15)2 + (3)2

= (6(-4 - 2) -15(12 + 3) - 3(6 - 3))/√(36 + 225 + 9)

= (-36 - 225 - 9)/√270 = -270/√270 = -√270



Discussion

No Comment Found