1.

Find the sign of expression sin100°+cos100°

Answer» Sin 100° + cos 100°= sin 100° + cos ( 90°+10°) =sin 100°+(-sin10°) (By the formula cos (π/2+x)= -sin x) =2 cos((100+10)/2)* Sin((100-10) /2) =2cos 55°*sin45°=2cos 55°* 1/√2=√2*√2 cos 55°*1/√2=√2cos 55° Or = (1.4)*(0.57) =0.8<br>sin 100° + cos 100°= sin100° + cos(90°+10°)[cos 10° becomes sin 10°]= sin100° + sin 10°by the formula,sin C + sin D = 2cos\xa0sin= 2cos\xa0sin= 2cos\xa0\xa0sin\xa0= 2cos55° + sin45°= 2cos55° + 1/√2=√2.√2 cos55° .1/√2= √2cos55°


Discussion

No Comment Found