InterviewSolution
Saved Bookmarks
| 1. |
Find the square roots of the following:(i) `7-24 i`(ii) `5+12 i` |
|
Answer» (i) Let `sqrt(7-42i) = x + iy ,` Then `sqrt(7-24i) = x+iy` ` or 7-24i = (x+iy)^(2)` `or 7 -24i =(x^(2) -y^(2)) + 2iy` `or x^(2) - y^(2) = 7" "(1)` ` and 2xy = - 24" "(2)` Now, `(x^(2)+y^(2) )^(2) = (x^(2)-y^(2))^(2)+4x^(2)y^(2)` ` or (x^(2)+y^(2))^(2) = 49+576= 625` ` or x^(2) +y^(2)" "[because x^(2)+y^(2) gt 0]" "(3)` on solving (1) and (3), we get `x^(2) = 16 and y^(2) = 9 rArr x = pm 4 and y = pm 3` From (2), 2xy is negative. So, x and y are of opposite signs. Hence, x =4 and y = - 3 or x= - 4 and y = 3 Hence, `sqrt(7-24i)= pm (4-3i)` (ii) Let `sqrt(5+12i) = x + iy`, Then `sqrt(5+12i) = x+iy` `or 5+12i=(x+iy)^(2)` `or 5+12i=(x^(2) -y^(2)) + 2ixy` `or x^(2) - y^(2) = 5" (1)` `and 2xy = 12" "(2)` Now,`(x^(2) +y^(2))^(2)=(x^(2)-y^(2))^(2)+4x^(2)y^(2)` `or (x^(2) +y^(2))^(2) = 5^(2) + 12^(2) = 169` `or x^(2)+y^(2) = 13" "(because x^(2)+y^(2) gt 0)" (3)` On sloving (1) and (2) , we get `x^(2) = 9 and y^(2) = 4 rArr x = pm3 and y = pm 2` From (2), 2xy is positive . So, x and y are of the same sign. Hence, `x = 3 and y = 2 or x = - 3 and y = -2` Hence, `sqrt(5+12i) = pm (3+2i)` (iii) Let `sqrt(-15 -8i) = x+iy`. Then `sqrt(-15-8i) = x + iy` ` or -5-8i = (x+iy)^(2)` `or -15-8i= (x+iy)^(2)` `or -15 = x^(2) -y^(2)" "(1)` `and 2xy = - 8 " "(2)` Now `,(x^(2)+y^(2))^(2) = (x^(2) -y^(2))^(2) + 4x^(2) y^(2)` `or (x^(2)+y^(2))^(2) = (-15)^(2) + 64 = 289` `or x^(2)+y^(2) = 17` On sloving (1) and (3), we get `x^(2) = 1 and y^(2) = 16 rArr x = pm 1 and y = pm 4` From (2), 2xy is negative . So, x and y are of oppsite signs. Hence, x = 1 and y = - 4 or x = -1 and y = 4 Hence, `sqrt(-15-8i) =pm (1-4i)`. |
|