InterviewSolution
Saved Bookmarks
| 1. |
Find the sum of C_1 + 2C_2 + 3C_3 + .... + nC_n |
|
Answer» SOLUTION :`C_1 + 2C_2 + 3C_3 + .... + nC_n` = `sum_(k=1)^N kC_k` = `sum_(k=1)^n k.^nC_k` = `sum_(k=1)^n n("^(n-1)C_(k-1))` `nsum_(k=1)^n "^(n-1)C_(k-1) = `n("^(n-1)C_0 + ^(n-1)C_1 + .... + ^(n-1)C_(n-1))` `n.2^(n-1)` |
|