| 1. |
Find the sum of first n terms of the series\(\frac{1}{2}\) + \(\frac{3}{4}\) + \(\frac{7}{8}\) + \(\frac{15}{16}\) + ⋯ + n terms |
|
Answer» The given sequence is \(\frac{1}{2}\) + \(\frac{3}{4}\) + \(\frac{7}{8}\) + \(\frac{15}{16}\) + ⋯ + n terms We can write each individual as, \(\frac{1}{2}\) = 1 − \(\frac{1}{2}\) \(\frac{3}{4}\) = 1 − \(\frac{1}{4}\) \(\frac{7}{8}\) = 1 − \(\frac{1}{8}\) and … till n terms Now writing each term in its new form, we get, \(\big(1-\frac{1}{2}\big)+\big(1-\frac{1}{4}\big)+\big(1-\frac{1}{8}\big)+...+\big(1-\frac{1}{2_n}\big)\) = (1 + 1 + 1 … n terms) − \(\big(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\,...+\frac{1}{2_n}\big)\) = n − \(\big(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\,...+\frac{1}{2_n}\big)\) … (i) Now, \(\big(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\,...+\frac{1}{2_n}\big)\) is a G.P with common ratio = \(\frac{1}{2}\) so, \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\,...+\frac{1}{2_n}\) = \(\frac{\frac{1}{2} \big(1 − (\frac{1}{2})^n\big)}{1 − \frac{1}{2}}\) = \(\bigg[1 −\big (\frac{1}{2}\big)^n \bigg]\) Putting this value in eq.(i), we get n − \(\big(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\,...+\frac{1}{2_n}\big)\) = n − \(\bigg[1 −\big (\frac{1}{2}\big)^n \bigg]\) = n − 1 + \(\big(\frac{1}{2}\big)^n\) |
|