1.

Find the sum of the series 1 + 4 + 9 +16 + 25 + 36 +......+ 121 ?1. 5062. 5233. 5254. None of these

Answer» Correct Answer - Option 1 : 506

Concept:

  • 12 + 22 + 32 + ..... + n2 = \(\frac{n(n+1)(2n+1)}{6}\)

Calculation:

Here we have to find the sum of the series 1 + 4 + 9 +16 + 25 + 36 +......+ 121

The given series can be re-written as: 12 + 22 + 32 + ..... + 112

As we know that, 12 + 22 + 32 + ..... + n2 = \(\frac{n(n+1)(2n+1)}{6}\)

Here, n = 11
⇒ 12 + 22 + 32 + ..... + 112 = \(\frac{11 \times 12 \times 23}{6} = 506\)

Hence, option 1 is the correct answer.



Discussion

No Comment Found

Related InterviewSolutions